

Norley CE Primary School

Calculations Policy

We are a church school where education is nourished through the teachings of Jesus Christ, enabling each child to fulfil their potential and which reflects our commitment to academic excellence.

We want our children to celebrate and appreciate diversity, fostering qualities that encourage every child to have aspiration for a society in which every individual is cherished.

With our Christian belief at its heart, we work in partnership with each other, families, the church, the local and wider community to create a stimulating and caring environment, where everyone is welcomed, nurtured and empowered.

Christian values directly inspire and influence the children to recognise their self-worth and flourish, enabling them to make the right choices that will continue to shape their lives.

You are the light of the world. A city built on a hill cannot be hidden. No one after lighting a lamp puts it under the bushel basket, but on the lamp stand, and it gives light to all in the house. In the same way, let your light shine before others, so that they may see your good works and give glory to your Father in heaven. (Matt. 5:14-16)

Calculations Policy

Overview of calculation strategies

Early Years into KS1

Practical, oral and mental activities to understand calculation. Personal methods of recording.

Key Stage 1

Methods of recording / jottings to support calculation (e.g. partitioning)

Introduce signs and symbols (+ / - in Year 1 and x / ÷ in Year 2)

Use images such as empty number lines to support mental and informal calculation.

Year 3

More efficient informal written methods / jottings – expanded methods and efficient use of number lines.

Years 4-6

Continue using efficient informal methods (expanded addition and subtraction, grid multiplication, division by chunking) and number lines. Develop these to larger numbers and decimals where appropriate.

Begin to develop efficient written methods (standard / compact methods) for all four operations.

When faced with a calculation, children are able to decide which method is most appropriate and have strategies to check its accuracy.

Whatever method is chosen (in any year group), it must still be underpinned by a secure and appropriate knowledge of number facts

By the end of Year 6, children should:

- have a secure knowledge of number facts and a good understanding of the four operations in order to:
 - carry out calculations mentally when using one-digit and two-digit numbers
 - use particular strategies with larger numbers when appropriate
- use notes and jottings to record steps and part answers when using longer mental methods
- have an efficient, reliable, compact written method of calculation for each operation that children can apply with confidence when undertaking calculations that they cannot carry out mentally;

Children should always **look at the actual numbers (not the size of the numbers**) before attempting any calculation to determine whether or not they need to use a written method.

Therefore, the key question that children should always ask themselves before attempting a calculation is: -

Mental methods of calculation

Oral and mental work in mathematics is essential, particularly so in calculation. Early practical, oral and mental work must lay the foundations by providing children with a good understanding of how the four operations build on efficient counting strategies and a secure knowledge of place value and number facts. Later work must ensure that children recognise how the operations relate to one another and how the rules and laws of arithmetic are to be used and applied. Ongoing oral and mental work provides practice and consolidation of these ideas. It must give children the opportunity to apply what they have learned to particular cases, exemplifying how the rules and laws work, and to general cases where children make decisions and choices for themselves.

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice and repetition. It requires an understanding of number patterns and relationships developed through directed enquiry, use of models and images and the application of acquired number knowledge and skills. Secure mental calculation requires the ability to:

- recall key number facts instantly for example, all addition and subtraction facts for each number to at least 10 (Year 2), sums and differences of multiples of 10 (Year 3) and multiplication facts up to 10 × 10 (Year 4);
- use taught strategies to work out the calculation for example, recognise that addition can be done in any order and use this to add mentally a one-digit number or a multiple of 10 to a one-digit or two-digit number (Year 1), partition two-digit numbers in different ways including into multiples of ten and one and add the tens and ones separately and then recombine (Year 2), when applying mental methods in special cases (Year 5);
- understand how the rules and laws of arithmetic are used and applied for example, to add or subtract mentally combinations of one-digit and two-digit numbers (Year 3), and to calculate mentally with whole numbers and decimals (Year 6).

Written methods of calculation

The 1999 Framework sets out progression in written methods of calculation that highlights how children would move from informal methods of recording to expanded methods that are staging posts to a compact written method for each of the four operations.

The aim is that by the end of Key Stage 2, the great majority of children should be able to use an efficient written method for each operation with confidence and understanding. This guidance promotes the use of what are commonly known as 'standard' written methods – methods that are efficient and work for any calculations, including those that involve whole numbers or decimals. They are compact and consequently help children to keep track of their recorded steps. Being able to use these written methods gives children an efficient set of tools they can use when they are unable to carry out the calculation in their heads or do not have access to a calculator. We want children to know that they have such a reliable, written method to which they can turn when the need arises.

In setting out these aims, the intention is that schools adopt greater consistency in their approach to calculation that all teachers understand and towards which they work. There has been some confusion as to the progression to written methods and for too many children the staging posts along the way to the more compact method have instead become end points. While this may represent a significant achievement for some children, the great majority are entitled to learn how to use the most efficient methods. The challenge for teachers is determining when their children should move on to a refinement in the method and become confident and more efficient at written calculation.

The incidence of children moving between schools and localities is very high in some parts of the country. Moving to a school where the written method of calculation is unfamiliar and does not relate to that used in the previous school can slow the progress a child makes in mathematics. There will be differences in practices and approaches which can be beneficial to children. However, if the long-term aim is shared across all schools and if expectations are consistent then children's progress will be enhanced rather than limited. The entitlement to be taught how to use efficient written methods of calculation is set out clearly in the renewed objectives. Children should be equipped to decide when it is best to use a mental, written or calculator method based on the knowledge that they are in control of this choice as they are able to carry out all three methods with confidence.

Objectives

The objectives in the revised Framework show the progression in children's use of written methods of calculation in the strands 'Using and applying mathematics' and 'Calculating'.

Calculating – Y1-3	Calculating – Y4-6	
Year 1	Year 4	
 Relate addition to counting on; recognise that addition can be done in any order; use practical and informal written methods to support the addition of a one-digit number or a multiple of 10 to a one-digit or two-digit number Understand subtraction as 'take away' and find a 'difference' by counting up; use practical and informal written methods to support the subtraction of a one-digit number from a one-digit or two-digit number from a one-digit or two-digit number and a multiple of 10 from a two-digit number Use the vocabulary related to addition and 	 Refine and use efficient written methods to add and subtract two-digit and three-digit whole numbers and £.p Develop and use written methods to record, support and explain multiplication and division of two-digit numbers by a one-digit number, including division with remainders (e.g. 15 × 9, 98 ÷ 6) 	
subtraction and symbols to describe and record addition and subtraction number sentences		
Year 2	Year 5	
 Represent repeated addition and arrays as multiplication, and sharing and repeated subtraction (grouping) as division; use practical and informal written methods and related vocabulary to support multiplication and division, including calculations with remainders Use the symbols +, -, ×, ÷ and = to record and interpret number sentences involving all four operations; calculate the value of an unknown in a number sentence (e.g. □ ÷ 2 = 6, 30 - □ = 24) 	 Use efficient written methods to add and subtract whole numbers and decimals with up to two places Use understanding of place value to multiply and divide whole numbers and decimals by 10, 100 or 1000 Refine and use efficient written methods to multiply and divide HTU × U, TU × TU, U.t × U and HTU ÷ U 	
Year 3	Year 6	
 Develop and use written methods to record, support or explain addition and subtraction of two-digit and three-digit numbers 	 Use efficient written methods to add and subtract integers and decimals, to multiply and divide integers and decimals by a one- 	
 Use practical and informal written methods to multiply and divide two-digit numbers (e.g. 13 × 3, 50 ÷ 4); round remainders up or down, depending on the context 	digit integer, and to multiply two-digit and three-digit integers by a two-digit integer	
 Understand that division is the inverse of multiplication and vice versa; use this to derive and record related multiplication and division number sentences 		

Written methods for addition of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

Children need to acquire **one efficient written method of calculation for** addition which they know they can rely on **when mental methods are not appropriate.**

To add successfully, children need to be able to:

- recall all addition pairs to 9 + 9 and complements in 10;
- add mentally a series of one-digit numbers, such as 5 + 8 + 4;
- add multiples of 10 (such as 60 + 70) or of 100 (such as 600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways.

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for addition.

Year group	Main method	Alternative method(s)
	Stage 1: The empty number line	Partition one of the numbers
Year 2 / 3 (Add speech bubbles at start of section – using 'This is the way we do it''	Steps in addition can be recorded on a number line. The steps often bridge through a multiple of 10. $8 + 7 = 15$ $\begin{array}{r} +5 \\ +2 \\ 8 & 10 \\ 15 \\ 48 + 37 = 85 \end{array}$ $\begin{array}{r} +7 \\ +30 \\ +2 \\ 48 \\ 78 & 80 \\ 85 \end{array}$ Alternatives (for some children) $48 + 37 = 85$ $\begin{array}{r} +2 \\ +2 \\ 48 \\ 50 \\ 85 \end{array}$	This method will be a jotting approach, and may look like the following examples: - 48 + 37 48 + 30 = 78 78 + 7 = 85 Or 48 + 30 + 7 = 85 Using a number line lets me show my thinking on paper
Year group	Main method	Alternative method(s)
	Stage 2: Partitioning	Partition one of the numbers

Norley CE Primary School Calculations Policy

Year 2 / 3	Record steps in addition using partitioning:	58 + 87
Add speech bubbles	Initially as a jotting: - 58 + 87 = 50 + 80 + 8 + 7 = 130 + 15 = 145 Or $50 + 80 = 130$ 8 + 7 = 15 130 + 15 = 145 Partitioned numbers are then written under one another: -	This method is basically a 'jotting' version of the number line method Or 87 + 50 = 137 58 + 80 = 138
Years 4-6	50880713015=145This method may be appropriate for some children with larger numbers if they struggle with Stages 3-450030824006070080570011014=82431001401212051401214	137 + 8 = 145 Or 87 + 50 + 8 = 145 One popular jotting approach is: - 58 + 87 130 + 15 = 145

	Stage 3	: Expanded	method in co	olumns
	A. Single 'carry' in	units	B. 'Carry' in	units and tens
Year 3	Adding the tens firs 67 + 24		+ 87	'Fifty plus eighty
	67		58	equals one hundred
(Simple examples to	<u>+ 24</u>		<u>+ 87</u>	and thirty, because
introduce the	80		130	'five plus eight equals thirteen.
expanded method to the children.	11		15	
Many children would	91		145	
continue to answer	Adding the ones fire	st:		
these calculations	67		58	Adding the ones first
mentally or using a simple jotting –	<u>+ 24</u>		+ 87	gives the same answer
See Stage 2)	11		15	as adding the tens first
	80		130	
	91		145	
	Refine over time to	adding the o	nes digits first co	onsistently, with harder calculations
Voor 2 / A	457 + 76	53	38 + 286	
.Year 3 / 4	457	Then	538	
	<u>+ 76</u>		<u>+ 286</u>	
	13		14	
	120		110	
	<u>400</u>		<u>700</u>	
	533		824	
	The time spent pra and understanding			depend on security of number facts recall
		Stage 4: Co	lumn methoo	ł
Year 4 onwards	58 + 87	457 + 76	538 + 286	
	58 Then	457 1	hen 538	Use the words 'carry ten' and
	+ 87	+ 76	+ 286	'carry hundred', not 'carry
Record carry	123	533	824	one'
digits below	11	11	11	
the line				mbers and decimals.
	Return to expa		-	
Years 5-6	2467 + 785	48	24 + 2369	46.73 + 78.6
	2467		4824	46.73
	+ <u>785</u>		+ 2369	<u>78.60</u>
			7193	<u>125.33</u>
	<u>3252</u>			
	111		1 1	111

Written methods for subtraction of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

To subtract successfully, children need to be able to:

- recall all addition and subtraction facts to 20;
- subtract multiples of 10 (such as 160 70) using the related subtraction fact, 16 7, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of one hundred, ten and one in different ways (e.g. partition 74 into 70 + 4 or 60 + 14).

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for subtraction.

Children need to acquire **one efficient written method of calculation for** subtraction which they know they can rely on **when mental methods are not appropriate.**

<u>But</u>, they should look at the actual numbers each time they see a calculation and decide whether or not their favoured method is most appropriate (e.g. If there are zeroes in a calculation such as 2006 - 128 then the 'counting on' approach may well be the best method in that particular instance

Therefore, when subtracting, whether mental or written, children will mainly choose between two main strategies: -

Taking away (Counting Back)

Complementary Addition (Counting On)

When should we count back and when should we count on?

This will alter depending on the calculation (see below), but often the following rules apply

	Stage 2: Subtraction by counting back	Subtraction by counting up
	Expanded method	Number lines (continued)
(ear 3 / 4	Introduce the expanded method with 2 digit	
	numbers to explain the process.	
	Partition both numbers into tens and ones.	
	Exchange from the tens to the ones.	
	83 - 38	
	70	142 – 86
	80 3 70 13 80 3 ¹	+4 +10 +40 +2 = 56
	80 3 70 13 80 3 - <u>30 8</u> <u>30 8</u> - <u>30 8</u>	
	40 5	86 90 100 140 142
	Exchange from hundreds to tens and tens to ones	
	142 - 86	Or (in fewer steps)
	130 1	+14 +42 = 56
	100 40 2 100 30 12 100 40 2	
	- 80 6 80 6 80 6	86 100 142
	<u> </u>	
oor A		
ear 4	Take the method into three digit numbers Subtract the ones then the tens then the hundreds	For examples without exchanging, the number
		line method takes considerably longer than
	Demonstrate without exchanging first	mental partitioning or expanded.
	784 - 351	
	700 80 4	854 - 286
	<u>- 300 50 1</u>	
	400 30 3	+4 +10 +500 +54 = 568
	Move towards exchanging from hundreds to tens	
	and tens to ones	► 286 290 300 800 854
	854 - 286	Or (the efficient method)
	700 /140 / 1	+14 +554 = 568
	800 50 4 800 50 4	
	- 200 80 6 - 200 80 6	286 300 854
	500 60 8	Alternative (count the hundreds first)
		+500
		+100 +100 +100 +100 +100 +14
		+54 =568
	Use some examples which include the use of zeros	
	605 – 328	286 386 486 586 686 786 800 854
	90	
	500 100 1	For numbers containing zeros, counting up is
		often the most reliable method.
	- <u>300 20 8</u> - <u>300 20 8</u>	
	200 70 7	
Continue t	o use expanded subtraction until both number facts and	+72 =205 = 277
	e are considered to be very secure	
	-	328 400 605

	Stage 3: Standard method (o	lecomposition)
Mainly Y5 onwards	Decomposition relies on secure understanding of the expanded method, and simply displays the same	
onwards	numbers in a contracted form.	
(Using		
example B	854 – 286 Continue to refer to di	igits by their actual value, not
from Stage		n explaining a calculation. E.g.
2)	8 5 4 One hundred and fort	y subtract eighty.
	<u>-2 8 6</u>	
	5 6 8	
	Again, use examples containing zeros, remembering	
	that it may be easier to count on with these	The counting up method is often used in
	numbers (see Stage 2)	Years 5 and 6 for children whose mental
(110:22	605 – 328	recall is weak, or who require a visual
(Using example C	9	image to support their thinking.
from Stage		
2)	5 1 1 6 0 5	
-,	$\frac{-328}{277}$	
	277	
	Move onto examples using 4 digit (or larger)	814 6 - 472 9
	numbers and then onto decimal calculations.	+71 +200 +3000 +146
	814.6 472.0	
	814 6 - 472 9 7 1 3 1	4729 4800 5000 8000
	8/14/6	8146 = 3000
		146
	<u>- 4 7 2 9</u> 3 4 1 7	200
		71
		341 7
	Both methods can be used with decimals, although	the counting up method becomes less efficient and
	reliable when calculating with	more than two decimal places.
	83.6 - 47.9	83.6 - 47.9
	7 12 1	
	8/3/b	+2.1 +30 +3.6 = 35.7
	<u>- 4 7.9</u> 3 5.7	47.9 50 80 83.6
	<u> </u>	
	347.26 – 189.58	347.26 - 189.58
	1 13 16 11 1	
	3/4/7/.26	$0.42 10 \qquad 147 \qquad 0.26 = 157.68$
	- <u>189.58</u>	
	<u>157.68</u>	189.58 190 2 00 347
		347.26

Written methods for multiplication of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

These notes show the stages in building up to using an efficient method for two-digit by one-digit multiplication by the end of Year 4, two-digit by two-digit multiplication by the end of Year 5, and three-digit by two-digit multiplication by the end of Year 6.

To multiply successfully, children need to be able to:

- recall all multiplication facts to 10 × 10;
- partition number into multiples of one hundred, ten and one;
- work out products such as 70 × 5, 70 × 50, 700 × 5 or 700 × 50 using the related fact 7 × 5 and their knowledge of place value;
- add two or more single-digit numbers mentally;
- add multiples of 10 (such as 60 + 70) or of 100 (such as 600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value;
- add combinations of whole numbers using the column method (see above).

Note:

Children need to acquire **one efficient written method of calculation for** multiplication which they know they can rely on **when mental methods are not appropriate.**

It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for multiplication.

These mental methods are often more efficient than written methods when multiplying.

Use partitioning and grid methods until number facts and place value are secure

For a calculation such as 25 x 24, a quicker method would be 'there are four 25s in 100 so 25 x 24 = $100 \times 6 = 600$

When multiplying a 2 digit x 3 digit number (or a 3 digit x 3 digit number), the standard method is usually the most efficient

At all stages, use known facts to find other facts. E.g. Find 7×8 by using 5×8 (40) and 2×8 (16)

'The love of God shines through us by the work of our hands'

	Grid multiplication	Vertical multiplication		
Late Year 3 onwards (Mainly Year 4)	The grid method of multiplication is a simple, alternative way of recording the jottings shown previously. 3×17 3 30 21 = 51 If necessary (for some children) it can initially be taught using an array to show the actual product. $\frac{x}{10}$ 10 7 7 7 7 7 7 7 7	(Expanded method into standard) The expanded method links the grid method to the standard method. It still relies on partitioning the tens and units, but sets out the products vertically. Children will use the expanded method until they can securely use and explain the standard method. When setting out calculations vertically, begin with the units first (as with addition and subtraction)		
Year 4 / 5	$\begin{array}{c} 4 \times 67 \\ 60 \\ 7 \\ 4 \\ 240 \\ 28 \\ \end{array} = 268 \\ \text{Use all tables with more complex calculations}}\end{array}$	4×67 67 67 67 $x 4$ 28 240 268 268 268 67 $Place the 'carry' digit below the line of the $		
	7 x 89 80 9 7 560 63 = 623 Move onto HTU x U 4 x 378 300 70 8	7 x 89 $x \frac{7}{63}$ $62 \frac{3}{6}$ $5 \frac{60}{623}$ Where numbers are difficular add mentally, try to use the expanded or standard metally		
	3007084120028032= 1512The grid method may continue to be the main method used by children whose mental and written calculation skills are weak, or children who need the visual link to place value.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

E.g. 4 multiplied by by 70, not 7

			Sta	age 3: Long multiplication	I: TU x TU	
Year		Grid le	ong mu	ltiplication	Vertical 'standard' long multiplication	
group						
Years 5 & 6	Extend the estimate f	•	od to Tl	J × TU, asking children to	Children should only use the 'standard' method of long multiplication if they can regularly get	
	38 x 57				the correct answer using this method.	
	38 × 57 is	approximat	ely 40 >	< 60 = 2400.	38 x 57	
					38×57 is approximately $40 \times 60 = 2400$.	
	<u>x 5</u>			Add the two	38 38	
	30 1!	500 210	171		<u>x 57</u> or x <u>57</u> $x 57$	
				row	$2\hat{6}\hat{6}^{5}$ $2\hat{6}^{1}\hat{6}^{4}$	
	8 40	00 56	456		<u>1900 1900</u>	
			216	6	2166 2166	
			' 1	1		
			Add thes product	e sums for the overall	There is no 'rule' regarding the position of the 'carry'digits. Each choice has advantages and complications.	
	children i	n Years 5 ai	nd 6, ar	e 'choice' of many nd is the method that they	Either carry the digits mentally or have your own favoured position for these digits.	
	will main	ly use for lo		• •		
			Sta	ge 4: Long multiplication:	HTU x TU	
Year 6				is quite inefficient, and	Many children working at Level 5 choose the	
		ch scope fo ts' that nee		due to the number of 'part- added.	standard method. For HTU x TU calculations It especially efficient, and less prone to errors when mastered.	
	Use thi	s method w	vhen yo	ou find the standard		
	metho	d to be unre	eliable o	or difficult.	423 x 68	
					423×68 is approximately $400 \times 70 = 28000$.	
	423 x 68 423 × 68 i	s approxima	ately 40	0 × 70 = 28000.	423 423	
					<u>x68</u> or x <u>68</u> 1 2	
	<u>x</u>	60	8		$3 \overline{3 8 4} \qquad 3 \overline{3 8_1 4_4}$	
			2200	27200	<u>25880</u> <u>25380</u>	
	40	0 24000	3200	27200	<u>28764</u> <u>28764</u>	
	20	1200	160	1360		
	3	180	24	204	As before, either carry the 'carry'digits mentally or decide on your own favoured position for them.	
	1	1				

Written methods for division of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

These notes show the stages in building up to long division through Years 4 to 6 - first long divisionTU \div U, extending to HTU \div U, then HTU \div TU, and then short division HTU \div U.

To divide successfully in their heads, children need to be able to:

- understand and use the vocabulary of division for example in 18 ÷ 3 = 6, the 18 is the dividend, the 3 is the divisor and the 6 is the quotient;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways;
- recall multiplication and division facts to 10 × 10, recognise multiples of one-digit numbers and divide multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value;
- know how to find a remainder working mentally for example, find the remainder when 48 is divided by 5;
- understand and use multiplication and division as inverse operations.

Children need to acquire **one efficient written method of calculation for** subtraction which they know they can rely on **when mental methods are not appropriate.**

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for division.

To carry out expanded and standard written methods of division successful, children also need to be able to:

- understand division as repeated subtraction;
- estimate how many times one number divides into another for example, how many sixes there are in 47, or how many 23s there are in 92;
- multiply a two-digit number by a single-digit number mentally;
- understand and use the relationship between single digit multiplication, and multiplying by a multiple of 10. (e.g. 4 x 7 = 28 so 4 x 70 = 280 or 40 x 7 = 280 or 4 x 700 = 2800.)
- subtract numbers using the column method.

The above points are crucial. If children do not have a secure understanding of these prior learning objectives then they are unlikely to divide with confidence or success, especially when attempting the 'chunking' method of division. For example, without a clear understanding that 72 can be partitioned into 60 and 12, 40 and 32 or 30 and 42 (as well as 70 and 2), it would be difficult to divide 72 by 6, 4 or 3 using the 'chunking' method. 72 \div 6 'chunks' into 60 and 12 72 \div 4 'chunks' into 40 and 32 72 \div 3 'chunks' into 30 and 42 (or 30, 30 and 12)

	Stage 1: Number line division and mental division (pre chunking)		
Year group			

'The love of God shines through us by the work of our hands'

Calculations Policy				
Review Frequency:	3 years or earlier if considered necessary			
Reviewed by:	Curriculum and Community Committee 25 th April 2023			
Head Teacher approval signature:	Helen Kelly			
Head Teacher approval date:	25 th April 2023			
Chair of Governing Body approval signature:	Paul Corbishley			
Chair of Governing Body approval date:	25 th April 2023			
Date of next review:	25 th April 2026			