

Norley CE Primary School

Calculations Policy

We are a church school where education is nourished through the teachings of Jesus Christ, enabling each child to fulfil their potential and which reflects our commitment to academic excellence.

We want our children to celebrate and appreciate diversity, fostering qualities that encourage every child to have aspiration for a society in which every individual is cherished.

With our Christian belief at its heart, we work in partnership with each other, families, the church, the local and wider community to create a stimulating and caring environment, where everyone is welcomed, nurtured and empowered.

Christian values directly inspire and influence the children to recognise their self-worth and flourish, enabling them to make the right choices that will continue to shape their lives.

You are the light of the world. A city built on a hill cannot be hidden. No one after lighting a lamp puts it under the bushel basket, but on the lamp stand, and it gives light to all in the house. In the same way, let your light shine before others, so that they may see your good works and give glory to your Father in heaven.
(Matt. 5:14-16)

Calculations Policy

Overview of calculation strategies

Early Years into KS1

Practical, oral and mental activities to understand calculation.
Personal methods of recording.

Key Stage 1

Methods of recording / jottings to support calculation (e.g. partitioning) Introduce signs and symbols (+ / - in Year 1 and x / \div in Year 2)
Use images such as empty number lines to support mental and informal calculation.

Year 3

More efficient informal written methods / jottings - expanded methods and efficient use of number lines.

Years 4-6

Continue using efficient informal methods (expanded addition and subtraction, grid multiplication, division by chunking) and number lines. Develop these to larger numbers and decimals where appropriate.
Begin to develop efficient written methods (standard / compact methods) for all four operations.
When faced with a calculation, children are able to decide which method is most appropriate and have strategies to check its accuracy.

Whatever method is chosen (in any year group), it must still be underpinned by a secure and appropriate knowledge of number facts

By the end of Year 6, children should:

- have a secure knowledge of number facts and a good understanding of the four operations in order to:
- carry out calculations mentally when using one-digit and two-digit numbers
- use particular strategies with larger numbers when appropriate
- use notes and jottings to record steps and part answers when using longer mental methods
- have an efficient, reliable, compact written method of calculation for each operation that children can apply with confidence when undertaking calculations that they cannot carry out mentally;

Children should always look at the actual numbers (not the size of the numbers) before attempting any calculation to determine whether or not they need to use a written method.

Therefore, the key question that children should always ask themselves before attempting a calculation is: -

Can I do it in my head?

Mental methods of calculation

Oral and mental work in mathematics is essential, particularly so in calculation. Early practical, oral and mental work must lay the foundations by providing children with a good understanding of how the four operations build on efficient counting strategies and a secure knowledge of place value and number facts. Later work must ensure that children recognise how the operations relate to one another and how the rules and laws of arithmetic are to be used and applied. Ongoing oral and mental work provides practice and consolidation of these ideas. It must give children the opportunity to apply what they have learned to particular cases, exemplifying how the rules and laws work, and to general cases where children make decisions and choices for themselves.

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice and repetition. It requires an understanding of number patterns and relationships developed through directed enquiry, use of models and images and the application of acquired number knowledge and skills. Secure mental calculation requires the ability to:

- recall key number facts instantly - for example, all addition and subtraction facts for each number to at least 10 (Year 2), sums and differences of multiples of 10 (Year 3) and multiplication facts up to 10×10 (Year 4);
- use taught strategies to work out the calculation - for example, recognise that addition can be done in any order and use this to add mentally a one-digit number or a multiple of 10 to a one-digit or two-digit number (Year 1), partition two-digit numbers in different ways including into multiples of ten and one and add the tens and ones separately and then recombine (Year 2), when applying mental methods in special cases (Year 5);
- understand how the rules and laws of arithmetic are used and applied - for example, to add or subtract mentally combinations of one-digit and two-digit numbers (Year 3), and to calculate mentally with whole numbers and decimals (Year 6).

Written methods of calculation

The 1999 Framework sets out progression in written methods of calculation that highlights how children would move from informal methods of recording to expanded methods that are staging posts to a compact written method for each of the four operations.

The aim is that by the end of Key Stage 2, the great majority of children should be able to use an efficient written method for each operation with confidence and understanding. This guidance promotes the use of what are commonly known as 'standard' written methods - methods that are efficient and work for any calculations, including those that involve whole numbers or decimals. They are compact and consequently help children to keep track of their recorded steps. Being able to use these written methods gives children an efficient set of tools they can use when they are unable to carry out the calculation in their heads or do not have access to a calculator. We want children to know that they have such a reliable, written method to which they can turn when the need arises.

In setting out these aims, the intention is that schools adopt greater consistency in their approach to calculation that all teachers understand and towards which they work. There has been some confusion as to the progression to written methods and for too many children the staging posts along the way to the more compact method have instead become end points. While this may represent a significant achievement for some children, the great majority are entitled to learn how to use the most efficient methods. The challenge for teachers is determining when their children should move on to a refinement in the method and become confident and more efficient at written calculation.

The incidence of children moving between schools and localities is very high in some parts of the country. Moving to a school where the written method of calculation is unfamiliar and does not relate to that used in the previous school can slow the progress a child makes in mathematics. There will be differences in practices and approaches which can be beneficial to children. However, if the long-term aim is shared across all schools and if expectations are consistent then children's progress will be enhanced rather than limited. The entitlement to be taught how to use efficient written methods of calculation is set out clearly in the renewed objectives. Children should be equipped to decide when it is best to use a mental, written or calculator method based on the knowledge that they are in control of this choice as they are able to carry out all three methods with confidence.

Objectives

The objectives in the revised Framework show the progression in children's use of written methods of calculation in the strands 'Using and applying mathematics' and 'Calculating'.

Calculating - Y1-3
Year 1
- Relate addition to counting on; recognise that
addition can be done in any order; use practical
and informal written methods to support the
addition of a one-digit number or a multiple of
10 to a one-digit or two-digit number
- Understand subtraction as 'take away' and find a
'difference' by counting up; use practical and
informal written methods to support the
subtraction of a one-digit number from a one-
digit or two-digit number and a multiple of 10
from a two-digit number
- Use the vocabulary related to addition and
subtraction and symbols to describe and record
addition and subtraction number sentences

Year 2

- Represent repeated addition and arrays as multiplication, and sharing and repeated subtraction (grouping) as division; use practical and informal written methods and related vocabulary to support multiplication and division, including calculations with remainders
- Use the symbols,,$+- \times, \div$ and $=$ to record and interpret number sentences involving all four operations; calculate the value of an unknown in a number sentence (e.g. $\square \div 2=6,30-\square=24$)

Year 3

- Develop and use written methods to record, support or explain addition and subtraction of two-digit and three-digit numbers
- Use practical and informal written methods to multiply and divide two-digit numbers (e.g. $13 \times 3,50 \div 4$); round remainders up or down, depending on the context
- Understand that division is the inverse of multiplication and vice versa; use this to derive and record related multiplication and division number sentences

Calculating - Y4-6

Year 4

- Refine and use efficient written methods to add and subtract two-digit and three-digit whole numbers and £.p
- Develop and use written methods to record, support and explain multiplication and division of two-digit numbers by a one-digit number, including division with remainders (e.g. $15 \times 9,98 \div 6$)

Year 5

- Use efficient written methods to add and subtract whole numbers and decimals with up to two places
- Use understanding of place value to multiply and divide whole numbers and decimals by 10,100 or 1000
- Refine and use efficient written methods to multiply and divide $\mathrm{HTU} \times \mathrm{U}, \mathrm{TU} \times \mathrm{TU}, \mathrm{U} . \mathrm{t} \times \mathrm{U}$ and $\mathrm{HTU} \div \mathrm{U}$

Year 6

- Use efficient written methods to add and subtract integers and decimals, to multiply and divide integers and decimals by a onedigit integer, and to multiply two-digit and three-digit integers by a two-digit integer

Written methods for addition of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

Children need to acquire one efficient written method of calculation for addition which they know they can rely on when mental methods are not appropriate.

To add successfully, children need to be able to:

- recall all addition pairs to $9+9$ and complements in 10;
- add mentally a series of one-digit numbers, such as $5+8+4$;
- add multiples of $\mathbf{1 0}$ (such as $\mathbf{6 0 + 7 0}$) or of $\mathbf{1 0 0}$ (such as $\mathbf{6 0 0 + 7 0 0) ~ u s i n g ~ t h e ~ r e l a t e d ~ a d d i t i o n ~}$ fact, $6+7$, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways.

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for addition.

| Year group | Main method | Alternative method(s) |
| :--- | :--- | :--- | :--- |
| Sear $\mathbf{2 ~ / ~ 3 ~ 3 ~ 1 : ~ T h e ~ e m p t y ~ n u m b e r ~ l i n e ~}$ | Steps in addition can be recorded on a number line. The
 steps often bridge through a multiple of 10.
 $8+7=15$ | Partition one of the numbers |
| This method will be a jotting | | |
| approach, and may look like the | | |
| following examples: - | | |

Stage 3: Expanded method in columns

Written methods for subtraction of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

To subtract successfully, children need to be able to:

- recall all addition and subtraction facts to 20;
- subtract multiples of 10 (such as $160-70$) using the related subtraction fact,16-7, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of one hundred, ten and one in different ways (e.g. partition 74 into $70+4$ or $60+14$).

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for subtraction.

Children need to acquire one efficient written method of calculation for subtraction which they know they can rely on when mental methods are not appropriate.

But, they should look at the actual numbers each time they see a calculation and decide whether or not their favoured method is most appropriate (e.g. If there are zeroes in a calculation such as 2006 128 then the 'counting on' approach may well be the best method in that particular instance

Therefore, when subtracting, whether mental or written, children will mainly choose between two main strategies:-

Taking away (Counting Back)

Complementary Addition (Counting On)

When should we count back and when should we count on?
This will alter depending on the calculation (see below), but often the following rules apply

Year group
Subtraction by counting back (or taking away)

Subtraction by counting up (or complementary addition)

Stage 1: Using the empty number line

Some numbers (83-38) can be subtracted just as quickly either way.
$83-38=45$

Partition 38. Take away 30 then take away 8 (-3-5)

Count up from the smaller to the larger number.

or

\begin{tabular}{|c|c|c|}
\hline \& Stage 2: Subtraction by counting back Expanded method \& Subtraction by counting up Number lines (continued) \\
\hline Year 3 / 4 \& \begin{tabular}{l}
Introduce the expanded method with 2 digit numbers to explain the process. \\
Partition both numbers into tens and ones. \\
Exchange from the tens to the ones.
\[
83-38
\]
\[
\begin{array}{rrrrr}
80 \& 3 \& 7013 \& 70 \\
-\quad 30 \quad 8 \& 30 \quad 8 \\
- \& -\frac{30}{} \& 8 \\
\hline 40 \& 5
\end{array}
\] \\
Exchange from hundreds to tens and tens to ones 142-86
\end{tabular} \& \begin{tabular}{l}
\[
142-86
\] \\
Or (in fewer steps)
\end{tabular} \\
\hline Year 4
A \& \begin{tabular}{l}
Take the method into three digit numbers Subtract the ones then the tens then the hundreds Demonstrate without exchanging first
\[
\begin{array}{rrr}
784-351 \& \& \\
700 \& 80 \& 4 \\
-\quad 300 \& 50 \& 1 \\
\hline 400 \& 30 \& 3 \\
\hline
\end{array}
\] \\
Move towards exchanging from hundreds to tens and tens to ones
\end{tabular} \& For examples without exchanging, the number line method takes considerably longer than mental partitioning or expanded.
854-286 \\
\hline B

C \& \begin{tabular}{l}
854-286

Use some examples which include the use of zeros

 \&

Or (the efficient method)

Alternative (count the hundreds first)
\end{tabular}

\hline \& $$

$$ \& For numbers containing zeros, counting up is often the most reliable method.

\hline \multicolumn{2}{|l|}{Continue to use expanded subtraction until both number facts and place value are considered to be very secure} \&

\hline
\end{tabular}

Stage 3: Standard method (decomposition)

Both methods can be used with decimals, although the counting up method becomes less efficient and reliable when calculating with more than two decimal places.
83.6-47.9

347.26-189.58

11316111
$3 / 4 / 7 / 26$

- 189.58
157.68
83.6-47.9

347.26-189.58

347.26

Written methods for multiplication of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

These notes show the stages in building up to using an efficient method for two-digit by one-digit multiplication by the end of Year 4, two-digit by two-digit multiplication by the end of Year 5, and three-digit by two-digit multiplication by the end of Year 6.

To multiply successfully, children need to be able to:

- recall all multiplication facts to $\mathbf{1 0 \times 1 0}$;
- partition number into multiples of one hundred, ten and one;
 and their knowledge of place value;
- add two or more single-digit numbers mentally;
- add multiples of $\mathbf{1 0}$ (such as $\mathbf{6 0 + 7 0}$) or of $\mathbf{1 0 0}$ (such as $\mathbf{6 0 0 + 7 0 0) ~ u s i n g ~ t h e ~ r e l a t e d ~ a d d i t i o n ~}$ fact, $6+7$, and their knowledge of place value;
- add combinations of whole numbers using the column method (see above).

Note:

Children need to acquire one efficient written method of calculation for multiplication which they know they can rely on when mental methods are not appropriate.

It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for multiplication.

These mental methods are often more efficient than written methods when multiplying.
Use partitioning and grid methods until number facts and place value are secure
 four 25s in 100 so $\mathbf{2 5 \times 2 4 = 1 0 0 \times 6 = 6 0 0}$

When multiplying a 2 digit x 3 digit number (or a 3digit x 3 digit number), the standard method is usually the most efficient

At all stages, use known facts to find other facts. E.g. Find 7×8 by using 5×8 (40) and 2×8 (16)

Expanded multiplication

Standard 'compact' multiplication

Year group
Stage 1: Number lines and mental methods
Year 2
Begin by building on the understanding that multiplication is repeated addition, using arrays and number line s to support the thinking.

Using a number line

Or

$$
2 \times 10=10 \times 2
$$

Using an array

$2 \times 10=20$

Year 3

Years 3-4
Extend the methods above to calculations which give products greater than 100.
Extend the above methods to include the 3,4 and 6 times tables then begin to partition using jottings and number lines.

$$
3 \times 17
$$

$10+7$
$03691215182124273033 \beta 63942454851$
Or

$$
\begin{array}{r}
10 \times 3=30 \\
7 \times 3=\underline{21}
\end{array}
$$

$21=51$
becomes
$10 \times 3=30$
$7 \times 3=\frac{21}{51}$ $+21=51$

4×67

Or
$60 \times 4=240$
Each of these methods can be used in the future if children find expanded or standard methods difficult

Extend to using these methods with all tables to 10×10.

Year group

Stage 2: Written methods - Short multiplication

Grid multiplication

Vertical multiplication
(Expanded method into standard)

4)

The grid method of multiplication is a simple, alternative way of recording the jottings shown previously.
3×17

$\mathbf{1 0}$	$\mathbf{7}$
30	21

If necessary (for some children) it can initially be taught using an array to show the actual product.

4×67

Use all tables with more complex calculations

Move onto HTU x U
4×378

The grid method may continue to be the main method used by children whose mental and written calculation skills are weak, or children who need the visual link to place value.

The expanded method links the grid method to the standard method.
It still relies on partitioning the tens and units, but sets out the products vertically.

Children will use the expanded method until they can securely use and explain the standard method.

When setting out calculations vertically, begin with the units first (as with addition and subtraction)

Stage 3: Long multiplication: TU x TU

Year
Grid long multiplication
Vertical 'standard' long multiplication
group

Years 5 \& 6

Extend the grid method to TU \times TU, asking children to estimate first. '

38×57

38×57 is approximately $40 \times 60=2400$.

The grid method is often the 'choice' of many children in Years 5 and 6, and is the method that they will mainly use for long multiplication.

Stage 4: Long multiplication: HTU x TU

Year 6

 For HTU x TU, grid method is quite inefficient, andhas much scope for error due to the number of 'part-
products' that need to be added.

Use this method when you find the standard method to be unreliable or difficult.
423×68
423×68 is approximately $400 \times 70=28000$.

X	60	8	
400	24000	3200	27200
20	1200	160	1360
3	180	24	204
			28764

Many children working at Level 5 choose the standard method. For HTU x TU calculations It especially efficient, and less prone to errors when mastered.
423×68
423×68 is approximately $400 \times 70=28000$.

423	423		
+68	or	x	681
3384		33814	
25 B80		$\underline{25380}$	
$\underline{287164}$		$\underline{28764}$	

As before, either carry the 'carry'digits mentally or decide on your own favoured position for them.

Written methods for division of whole numbers

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

These notes show the stages in building up to long division through Years 4 to 6 - first long division $\mathrm{TU} \div \mathrm{U}$, extending to $\mathrm{HTU} \div \mathrm{U}$, then $\mathrm{HTU} \div \mathrm{TU}$, and then short division $\mathrm{HTU} \div \mathrm{U}$.

To divide successfully in their heads, children need to be able to:

- understand and use the vocabulary of division - for example in $18 \div 3=6$, the 18 is the dividend, the 3 is the divisor and the 6 is the quotient;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways;
- recall multiplication and division facts to 10×10, recognise multiples of one-digit numbers and divide multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value;
- know how to find a remainder working mentally - for example, find the remainder when 48 is divided by 5 ;
- understand and use multiplication and division as inverse operations.

Children need to acquire one efficient written method of calculation for subtraction which they know they can rely on when mental methods are not appropriate.

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for division.

To carry out expanded and standard written methods of division successful, children also need to be able to:

- understand division as repeated subtraction;
- estimate how many times one number divides into another - for example, how many sixes there are in 47, or how many 23s there are in 92;
- multiply a two-digit number by a single-digit number mentally;
- understand and use the relationship between single digit multiplication, and multiplying by

- subtract numbers using the column method.

The above points are crucial. If children do not have a secure understanding of these prior learning objectives then they are unlikely to divide with confidence or success, especially when attempting the 'chunking' method of division.

'The love of God shines through us by the work of our hands'

Stage 1: Number line division and mental division (pre chunking)

Year group

'The love of God shines through us by the work of our hands'

In lower KS2, children need a great deal of practice in mentally 'chunking' to develop their understanding of division. They can use an informal jotting to support their thinking.

These mental methods for dividing $T U \div U$ are usually based on partitioning in different ways.

Stage 2: Short division 'chunking'
Year group

$$
\text { Chunking - TU } \div U
$$

$\begin{array}{cc}\text { Year } 4 & \begin{array}{l}\text { - 'Short' division of TU } \div \boldsymbol{U} \text { introduces the 'chunking' method. } \\ \text { - This becomes more useful with HTU } \div \mathbf{U} \text { and later for long division. } \\ \text { - Chunking helps to consolidate the link between division and repeated subtraction }\end{array} \\ & \text { Once children can understand chunking for } T U \div U \text {, they move on to HTU } \div \boldsymbol{U} \text { quite quickly. }\end{array}$
When chunking we repeatedly subtract multiples or 'chunks' of the divisor.

17
Progress to examples which may require more than one chunk of 10 lots of the divisor

Chunking - HTU $\div \mathrm{U}$		
Year group	'Chunking' examples	Number line alternatives
Year 4	Progress quickly to HTU \div U examples. Again, some children will initially subtract many chunks of the divisor. $222 \div 6=37$ These are inefficient. Try to find the shorten the calculation. If children have secure recall of x and \div facts, their chunking will soon become efficient. Make sure that you include examples that use remainders. $373 \div 7=53 \text { r } 2$	Remember, the number line method can still be used for children who find the subtraction 'chunking' difficult. They are still finding chunks of the divisor but are counting on rather than counting back. $222 \div 6=37$ gest possible chunks of the divisor to

An estimate at the start will help children to find the largest chunks. If $6 \times 3=18 a n d 6 \times 4=24$ then $6 \times 30=180$ and $6 \times 40=240$. Therefore the answer will be between 30 and 40

Chunking - TU into HTU $\div \mathrm{U}$ - The alternative approach

Year group	'Chunking' examples - Find The Hunk	Number line alternatives
Year 4	An alternative approach to the standard chunking method is to develop the mental strategy outlined earlier, and to use this as the main method in Years 4 \& 5, using NNS chunking for long division in Y6 if needed. This method could be called 'Find The Hunk'. Using the same examples as before: - ```51\div3=17 30 (The 'hunk') }2 \div3```	Remember, the number line method can still be used for children who find it easier to support their thinking with a visual image They are still completing the same mental process of finding chunks of the divisor. 51
	$\begin{array}{rlrl} 87 \div 3= & 29 \\ 30 & 30 & 27 \end{array}$	87
	$\begin{array}{llll} \div 3 & & & \\ & 10 & 10 & 9=29 \end{array}$	
	Becomes	$\begin{array}{llll}0 & 30 & 60 & 87\end{array}$
	60 (The 'mega hunk') 27	
	$\div 3$ 20 9-29	
	$222 \div 6=37$	
	$\begin{array}{lllll}60 & 60 & 60 & 30 & 12\end{array}$	$222 \div 6=37$
	$\begin{array}{llllll}\div 6 & & & \\ & 10 & 10 & 10 & 5 & 2\end{array}$	
	Z	$\begin{array}{llllll}0 & 60 & 120 & 180 & 210 & 222\end{array}$

By this stage, children should always try to find the largest possible chunks of the divisor to shorten the calculation.

Stage 3: Short division - the compact method

Late Year 5 / Year 6

Only use this 'standard' method when children have had lots of experience with the chunking method and are confident with all multiplication and division facts

The compact or 'bus shelter' method of short division is often introduced far too early (in Years 3 and 4). Although children who can recall their division facts are able to get the correct answer using this method, they have little understanding of why it works, and are not using the place value of each digit.
By leaving this method until Year 6, children can develop greater confidence in their actual understanding of division, and will hopefully be able to then apply the 'chunking' method to long division, as they will have had much more practice
This compact method can then be introduced to improve their speed in short division.
Initially, introduce this method by linking it to 'chunking'.
$\mathbf{8 7} \div \mathbf{3}=\mathbf{2 9}$
$3 \longdiv { 2 0 + 9 }$

Then, refine the method into the traditional format, ensuring that all initial teaching is accompanied by a clear explanation of how this method works (see speech bubbles)

When this method is secure for $T U \div U$ then quickly progress to $H T U \div U$
Again, begin by briefly linking the method to 'chunking', using numbers where there is no carrying in the hundreds.
$222 \div 6=37$
$6 \longdiv { 3 0 + 7 }$
Refine the method, whilst clearly explaining the place value understanding.
$6) \quad \begin{array}{rl}3 & 2 \\ 2 & \text { From 220, what is the largest number of 10s that will divide exactly by 6? }\end{array}$ $220 \div 6=30$ (or 3 tens). Carry the remaining 40 to the units.
$6 \frac{37}{222}$ What is 42 divided by 6?

An alternative is to say 'How many 6 s in 220 - the answer must be a multiple of 10'

Finally, introduce examples of HTU $\div \mathrm{U}$ where there are also hundreds that need carrying, and where there are remainders.
$583 \div 4=145$ r 3
$100+40+5 \quad$ R 3
4) $400+160+23$

Continue to emphasise the place value until the children are secure with this method.

Or, 'How many 4s in 500? The answer must be a multiple of 100.

From 180, what is the largest number of 10s that will divide exactly by 4 ? $180 \div 4=40$. Carry the remaining 20 to the units.

Or, 'How many 4s in 180? The answer must be a multiple of 10.

What is 23 divided by 4?

Stage 4: Long division - chunking

Year 6 (more able)

More able children can now tackle long division, ThHTU \div TU. They will use the chunking method.

$=37$ R 5

Try to find the largest chunks if possible.

967
-78030 수 26
$-\frac{182}{5}: \begin{array}{l:l}7 & \mathbf{x} \\ 5 & \mathbf{3 7} \mathbf{5}\end{array}$

This refined answer is actually the traditional long division method, but with place value kept secure, and with the advantage of beina able to choose smaller chunks when necessarv

As before, children can choose to use the number line method if they find forward chunking easier.

$$
967 \div 26=37 \text { R5 }
$$

At this stage (Level 5) children can also create their own 'mental chunking' - see alternative 'Find The Hunk' method

$$
780, \quad 130 \quad 57=
$$

$$
\div 26
$$

$30 \quad 5 \quad 2 r 5=37$ R 5

Stage 5: Division of decimals

Calculations Policy	
Review Frequency:	3 years or earlier if considered necessary
Reviewed by:	Curriculum and Community Committee $25^{\text {th }}$ April 2023
Head Teacher approval signature:	Felen Kelly
Head Teacher approval date:	$25^{\text {th }}$ April 2023
Chair of Governing Body approval signature:	Paul Cor6ishleyChair of Governing Body approval date: $25^{\text {th }}$ April 2023 Date of next review: $25^{\text {th }}$ April 2026

